3.1361 \(\int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=350 \[ \frac{(4 b B-a C) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{4 b d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (3 a^2 C-4 a b B+8 A b^2+4 b^2 C\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{(4 b B-3 a C) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{4 b^2 d \sqrt{\cos (c+d x)}}-\frac{(4 b B-3 a C) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b^2 d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{C \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{2 b d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

((4*b*B - a*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(4*b*d*Sqrt[Cos[c + d
*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((8*A*b^2 - 4*a*b*B + 3*a^2*C + 4*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*E
llipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(4*b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - ((4*b*B - 3*
a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*b^2*d*Sqrt[(b + a*C
os[c + d*x])/(a + b)]) + (C*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2*b*d*Cos[c + d*x]^(3/2)) + ((4*b*B - 3*a*
C)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*b^2*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.28481, antiderivative size = 350, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 13, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.289, Rules used = {4265, 4102, 4108, 3859, 2807, 2805, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac{\left (3 a^2 C-4 a b B+8 A b^2+4 b^2 C\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{(4 b B-3 a C) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{4 b^2 d \sqrt{\cos (c+d x)}}-\frac{(4 b B-3 a C) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b^2 d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{(4 b B-a C) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{C \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{2 b d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]),x]

[Out]

((4*b*B - a*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(4*b*d*Sqrt[Cos[c + d
*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((8*A*b^2 - 4*a*b*B + 3*a^2*C + 4*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*E
llipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(4*b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - ((4*b*B - 3*
a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*b^2*d*Sqrt[(b + a*C
os[c + d*x])/(a + b)]) + (C*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2*b*d*Cos[c + d*x]^(3/2)) + ((4*b*B - 3*a*
C)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*b^2*d*Sqrt[Cos[c + d*x]])

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 4102

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m
 + 1)*(d*Csc[e + f*x])^(n - 1))/(b*f*(m + n + 1)), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a*C
*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4108

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x)}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (\frac{a C}{2}+b (2 A+C) \sec (c+d x)+\frac{1}{2} (4 b B-3 a C) \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{2 b}\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B-3 a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt{\cos (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{1}{4} a (4 b B-3 a C)+\frac{1}{2} a b C \sec (c+d x)+\frac{1}{4} \left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{2 b^2}\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B-3 a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt{\cos (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{1}{4} a (4 b B-3 a C)+\frac{1}{2} a b C \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{2 b^2}+\frac{\left (\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{8 b^2}\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B-3 a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt{\cos (c+d x)}}+\frac{\left ((4 b B-a C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx}{8 b}+\frac{\left ((-4 b B+3 a C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{8 b^2}+\frac{\left (\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt{b+a \cos (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{b+a \cos (c+d x)}} \, dx}{8 b^2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B-3 a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt{\cos (c+d x)}}+\frac{\left ((4 b B-a C) \sqrt{b+a \cos (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{8 b \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{8 b^2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left ((-4 b B+3 a C) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{8 b^2 \sqrt{b+a \cos (c+d x)}}\\ &=\frac{\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B-3 a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt{\cos (c+d x)}}+\frac{\left ((4 b B-a C) \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{8 b \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left ((-4 b B+3 a C) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{8 b^2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}\\ &=\frac{(4 b B-a C) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{(4 b B-3 a C) \sqrt{\cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{4 b^2 d \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}+\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B-3 a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 33.4505, size = 98830, normalized size = 282.37 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.49, size = 3191, normalized size = 9.1 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

1/4/d*(-1+cos(d*x+c))*(cos(d*x+c)+1)*(-8*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^
(1/2)*cos(d*x+c)^3*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2)
)*sin(d*x+c)*a*b-4*B*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b+2*C*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a*b-3*C*cos(d*x
+c)^2*((a-b)/(a+b))^(1/2)*a*b+C*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b-2*C*((a-b)/(a+b))^(1/2)*b^2+8*B*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))*((a-b)/(a
+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a*b-4*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))
^(1/2))*sin(d*x+c)*a*b+2*C*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b)
)^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*a*b*(1/(cos(d*x+c)+1))^(1/2)-3*C*cos(d*x+c
)^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(
-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a*b*(1/(cos(d*x+c)+1))^(1/2)+8*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b
))^(1/2))*sin(d*x+c)*a*b-4*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+
c)^3*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a*b+2*C*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^3*EllipticF((-1+cos(d*x+c))*((a-b
)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a*b-3*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^3*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a
-b))^(1/2))*sin(d*x+c)*a*b-8*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*
x+c)^2*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)
*a*b+16*A*cos(d*x+c)^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b)
)^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2*(1/(cos(d*x+c)+1))^(1/2)-8*A*cos(d*x+c)^3
*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*sin(d*x+c)*b^2*(1/(cos(d*x+c)+1))^(1/2)+4*B*cos(d*x+c)^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*b^2*(1/
(cos(d*x+c)+1))^(1/2)+6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^
3*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2+
8*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^3*EllipticPi((-1+cos(d
*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2-6*C*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1
/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a^2-4*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(co
s(d*x+c)+1))^(1/2)*cos(d*x+c)^3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))
*sin(d*x+c)*b^2+3*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^3*Elli
pticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a^2+16*A*cos(d*x+c)^2*(1
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/
(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2*(1/(cos(d*x+c)+1))^(1/2)-8*A*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c)
)*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x
+c)*b^2*(1/(cos(d*x+c)+1))^(1/2)+4*B*cos(d*x+c)^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-
1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*b^2*(1/(cos(d*x+c)+1))^(1/2)+6*C
*cos(d*x+c)^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/s
in(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*(1/(cos(d*x+c)+1))^(1/2)+8*C*cos(d*x+c)^2*(1/(a+b)
*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),
I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2*(1/(cos(d*x+c)+1))^(1/2)-6*C*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))*((a-
b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*a^
2*(1/(cos(d*x+c)+1))^(1/2)-4*C*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(
a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*b^2*(1/(cos(d*x+c)+1))^(1/2)+3*C*cos(d
*x+c)^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+
c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a^2*(1/(cos(d*x+c)+1))^(1/2)+4*B*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a*b-3*C*
cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2+3*C*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2+2*C*cos(d*x+c)^2*((a-b)/(a+b))^(
1/2)*b^2+4*B*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*b^2-4*B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^2)*((b+a*cos(d*x+c))/co
s(d*x+c))^(1/2)/b^2/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)^3/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\sqrt{b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)